skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walter, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free-electron lasers (FELs) are the world's most brilliant light sources with rapidly evolving technological capabilities in terms of ultrabright and ultrashort pulses over a large range of photon energies. Their revolutionary and innovative developments have opened new fields of science regarding nonlinear light-matter interaction, the investigation of ultrafast processes from specific observer sites, and approaches to imaging matter with atomic resolution. A core aspect of FEL science is the study of isolated and prototypical systems in the gas phase with the possibility of addressing well-defined electronic transitions or particular atomic sites in molecules. Notably for polarization-controlled short-wavelength FELs, the gas phase offers new avenues for investigations of nonlinear and ultrafast phenomena in spin-orientated systems, for decoding the function of the chiral building blocks of life as well as steering reactions and particle emission dynamics in otherwise inaccessible ways. This roadmap comprises descriptions of technological capabilities of facilities worldwide, innovative diagnostics and instrumentation, as well as recent scientific highlights, novel methodology, and mathematical modeling. The experimental and theoretical landscape of using polarization controllable FELs for dichroic light-matter interaction in the gas phase will be discussed and comprehensively outlined to stimulate and strengthen global collaborative efforts of all disciplines. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Shock experiments are widely used to understand the mechanical and electronic properties of matter under extreme conditions. However, after shock loading to a Hugoniot state, a clear description of the post-shock thermal state and its impacts on materials is still lacking. We used diffraction patterns from 100-fs x-ray pulses to investigate the temperature evolution of laser-shocked Al–Zr metal film composites at time delays ranging from 5 to 75 ns driven by a 120-ps short-pulse laser. We found significant heating of both Al and Zr after shock release, which can be attributed to heat generated by inelastic deformation. A conventional hydrodynamic model that employs (i) typical descriptions of Al and Zr mechanical strength and (ii) elevated strength responses (which might be attributed to an unknown strain rate dependence) did not fully account for the measured temperature increase, which suggests that other strength-related mechanisms (such as fine-scale void growth) could play an important role in thermal responses under shock wave loading/unloading cycles. Our results suggest that a significant portion of the total shock energy delivered by lasers becomes heat due to defect-facilitated plastic work, leaving less converted to kinetic energy. This heating effect may be common in laser-shocked experiments but has not been well acknowledged. High post-shock temperatures may induce phase transformation of materials during shock release. Another implication for the study is the preservability of magnetic records from planetary surfaces that have a shock history from frequent impact events. 
    more » « less
  3. Traumatic brain injury (TBI) is a leading cause of long-term neurological disability in the world and the strongest environmental risk factor for the development of dementia. Even mild TBI (resulting from concussive injuries) is associated with a greater than twofold increase in the risk of dementia onset. Little is known about the cellular mechanisms responsible for the progression of long-lasting cognitive deficits. The integrated stress response (ISR), a phylogenetically conserved pathway involved in the cellular response to stress, is activated after TBI, and inhibition of the ISR—even weeks after injury—can reverse behavioral and cognitive deficits. However, the cellular mechanisms by which ISR inhibition restores cognition are unknown. Here, we used longitudinal two-photon imaging in vivo after concussive injury in mice to study dendritic spine dynamics in the parietal cortex, a brain region involved in working memory. Concussive injury profoundly altered spine dynamics measured up to a month after injury. Strikingly, brief pharmacological treatment with the drug-like small-molecule ISR inhibitor ISRIB entirely reversed structural changes measured in the parietal cortex and the associated working memory deficits. Thus, both neural and cognitive consequences of concussive injury are mediated in part by activation of the ISR and can be corrected by its inhibition. These findings suggest that targeting ISR activation could serve as a promising approach to the clinical treatment of chronic cognitive deficits after TBI. 
    more » « less
  4. Abstract Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d 3/2 and 4d 5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site. 
    more » « less
  5. null (Ed.)
  6. Sub-femtosecond soft x-ray pulses induce coherent superposition of core-excited electronic states in NO probed in real time. 
    more » « less
  7. An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits. The general SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus-structure determination step. The presented processing pipeline allowed us to determine the 3D structure of bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits. 
    more » « less
  8. Abstract Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3μm x 1.7μm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction. 
    more » « less